
Ecologic niche modeling (ENM) is a growing field with
many potential applications to questions regarding the
geography and ecology of disease transmission.
Specifically, ENM has the potential to inform investigations
concerned with the geography, or potential geography, of
vectors, hosts, pathogens, or human cases, and it can
achieve fine spatial resolution without the loss of informa-
tion inherent in many other techniques. Potential applica-
tions and current frontiers and challenges are reviewed.

The emerging and evolving field of landscape epidemi-
ology has explored techniques for summarizing spatial

patterns in disease transmission data. These techniques
seek spatial patterns at some level of generalization or
averaging and then summarize overall patterns and trends
in the form of a smoothed surface. Techniques typically
applied to these challenges include splining and kriging, as
well as smoothing based on average values within coarser-
grained windows across landscapes (1–3). These
approaches always involve some loss of resolution to
smooth the surfaces, and some degree of averaging is
involved (Figure).

Although these approaches provide simple summaries
of spatial patterns, they do not often succeed in illustrating
true levels of complexity and heterogeneity that character-
ize biologic landscapes. Disease transmission cycles are
composite phenomena that represent interactions between
sets of species: hosts, vectors, and pathogens. The com-
plexities of spatial occurrence of disease will represent the
combination of complexities of occurrence of the compo-
nent species, as well as effects of chance events. Thus,
broad-trend generalizations such as those produced using
the smoothing techniques mentioned above are unlikely to
lead to novel insights and new understanding of complex

systems. The approach advocated in this report improves
the pattern summary by estimating species-specific eco-
logic niches. In this way, the complex influences of envi-
ronmental variation on species’ distributions and their
translation into disease transmission patterns can be appre-
ciated in greater detail (Figure).

Ecologic Niche Modeling (ENM)
Joseph Grinnell originated the concept of ecologic

niches and was the first to explore the connections between
ecologic niches and geographic distributions of species
(4). His idea, translated into more modern terminology,
was that the ecologic niche of a species is the set of condi-
tions under which the species can maintain populations
without immigration of individuals from other areas. A
more complete discussion of the concept of ecologic nich-
es and their mapping onto the geographic distributions of
species has been provided elsewhere (5).

Use of the ENM approach has grown considerably in
the biodiversity community in recent years (6–10). The
idea is that known occurrences of species across land-
scapes can be related to raster geographic information sys-
tem coverages summarizing environmental variation
across those landscapes to develop a quantitative picture of
the ecologic distribution of the species. ENM characterizes
the distribution of the species in a space defined by envi-
ronmental parameters, which are precisely those that gov-
ern the species’ geographic distribution under Grinnell’s
definition.

A particular strength of ENM is its independence from
any particular landscape. ENM can be used to identify
potential distributional areas on any landscape: unsampled
or unstudied portions of the native landscape, areas of
actual or potential invasion by a species with an expanding
range, or changing potential distributional areas as a con-
sequence of change (e.g., land use change or climate
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change). Thus, ENM represents a powerful tool for charac-
terizing ecologic and geographic distributions of species
across real-world landscapes.

Applications to Disease Systems
In recent years, the ENM approach has seen several

prototype applications to disease transmission systems by
public health and epidemiology specialists who have been
willing to explore novel ideas and approaches. I outline
what the technique has to offer to the field and provide
citations of example publications for each benefit and use.

Understanding Ecology of Diseases
In many cases, the details of ecologic parameters asso-

ciated with occurrences of diseases or of species participat-
ing in disease transmission (e.g., vectors, hosts, pathogens)
may be unclear because of small sample sizes, biased
reporting, or simply lack of detailed geographic or ecolog-
ic analysis. ENM encompasses a suite of tools that relate
known occurrences of these species or phenomena to raster
geographic information system layers that summarize vari-
ation in several environmental dimensions. The result is an
objective, quantitative picture of how what is known about
a species or phenomenon relates to environmental varia-
tion across a landscape. Studies using these approaches
include an examination of ecologic differences among dif-
ferent Chagas disease vectors in Brazil (11) and a charac-
terization of ecologic features of outbreaks of hemorrhagic
fever caused by Ebola and Marburg viruses (12,13).

Characterizing Distributional Areas
A next step in applying ENM approaches to under-

standing disease systems is characterizing geographic dis-
tributions. Here, ENM (or something akin to it) is used to
investigate landscapes for areas that meet the ecologic
requirements of the species. The result is an interpolation
between known sampling locations informed by observed
associations between the species and environmental char-
acteristics. Previous attempts to characterize geographic
distributions of species in the disease realm have demon-
strated the potential of the approach but have not always
used the most powerful inferential techniques available
(14,15). In at least 1 case (14), the methods used failed to
generalize and predict into areas of sparse sampling. ENM
produces statistically robust predictions of geographic dis-
tributions of species or phenomena (even in unsampled
areas), greatly exceeding expectations under random (null)
models. Numerous examples of applications of this func-
tionality to disease systems have been published
(11–13,16–22).

Identifying Areas of Potential Invasion 
in Other Regions

ENMs characterize general environmental regimes
under which species or phenomena may occur. To the
extent that the model is appropriately and correctly cali-
brated, it may be used to seek areas of potential distribu-
tion. Thus, ENMs can be used to identify areas that fit the
ecologic bill for a species, even if the species is not pres-
ent there. This approach has seen extensive experimenta-
tion and testing in the biodiversity realm (8,23), but
applications to disease transmission have as yet been few.
One study attempted to identify the particular species in
the Anopheles gambiae complex that was responsible for
the large-scale South American malaria outbreaks in the
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Figure. Hypothetical example of a species’ known occurrences
(circles) and inferences from that information. The middle panel
shows the pattern that would result from a surface-fitting or
smoothing algorithm, and the bottom panel shows the ability of
ecologic niche modeling approaches to detect unknown patterns
in biologic phenomena based on the relationship between known
occurrences and spatial patterns in environmental parameters.
GIS, geographic information system.



early 20th century (19), and another evaluated the geo-
graphic potential of a possible monkeypox host
(Cricetomys spp.) in North America (24).

Anticipating Risk Areas with Changing Climates
A logical extension of using ENMs to identify potential

distributional areas is to address the question of likely geo-
graphic shifts in distributional areas of species or phenom-
ena under scenarios of climate change or changing land
use (25). This approach has seen considerable attention in
the biodiversity realm, with both tests and validations
(26–28), and with broad applications across faunas and
floras (29–32). In the disease world, applications have
been few, although 1 study used likely climate
change–mediated range shifts to hypothesize the identity
of Lutzomyia vectors of recent leishmaniasis outbreaks in
southern Brazil (21).

Identifying Unknown Vectors or Hosts
ENM approaches can be applied to various parts of dis-

ease transmission cycles (e.g., overall case distribution,
reservoir host distribution, vector distribution) to identify
unknown elements in systems. The geography of overall
case distributions can provide an indication of which
clades are potential reservoirs and which are not. A first
application was an attempt to identify mammalian hosts of
the Triatoma protracta group of Chagas disease vectors in
Mexico (22), which succeeded in anticipating the mammal
hosts of 5 of 5 species for which a test was possible.
Further exploration of this possible application of ENM
methods has focused on the mysterious long-term reser-
voir of the filoviruses (Ebola and Marburg viruses) by
comparing African mammal distributions with those of
filovirus-caused disease outbreaks (33).

Discussion

Current Challenges in ENM
ENM, although it has old roots (4), is nonetheless a rel-

atively new tool in distributional ecology and biogeogra-
phy. Only a few recent studies have compared the
performance of different methodologic approaches under
the ENM rubric (34–37). As such, numerous challenges
remain in terms of refining approaches toward a more
powerful and synthetic methodology.

One central challenge is that of choosing modeling
methods appropriate to a particular question, in the sense
of discerning interpolation challenges from extrapolation
challenges. In a recent comparative study focused on inter-
polation, which inferred details of patterns of presence and
absence on a densely sampled landscape, several tech-
niques that have internal controls on overfitting were supe-
rior (34). Extrapolative challenges, such as predicting

potential distribution of invasive species, anticipating
species’ responses to global climate change, and identify-
ing unknown reservoirs or vectors, require different quali-
ties of modeling algorithms; different methods therefore
appear to emerge as superior, according to the particular
challenge (5). This balance of ability to interpolate accu-
rately versus ability to extrapolate effectively remains a
challenge for the ENM methods.

A second frontier that includes yet-to-be-resolved
details for ENM is that of testing and evaluating model
results. Currently accepted approaches center on the abili-
ty to predict independent test occurrence data in the small-
est area predicted (34,38). However, efficient predictions
can be poor descriptors of a species’ geographic range.
Simpler techniques that place greater emphasis on mini-
mizing the omission of known occurrences may be more
appropriate. Pairing significance tests (which demonstrate
that the coincidence between a prediction and test data is
better than that achieved by random or null models) with
setting minimum performance criteria (which ensure that
that the prediction is accurate enough to meet the needs of
the study) is probably the best approach (38). However,
these methods have yet to be agreed upon broadly in the
ENM community.

Current Challenges in Applications of 
ENM to Disease Systems

Beyond methodologic challenges, several issues remain
to be addressed for full application of ENM methods to
disease systems. The first, and perhaps most important, is
understanding the role of scale in space and time.
Preliminary explorations suggest that proper matching of
temporal and spatial scales in analyses may offer particu-
lar opportunities for precise and accurate prediction of the
behavior of disease phenomena (39). Similarly, proper
choice of environmental datasets requires further explo-
ration. Climate data provide longer temporal applicability,
but remotely sensed data that summarize aspects of surface
reflectance can provide finer spatial resolution, and may
measure aspects of ecologic landscapes that climate
parameters alone may not capture (40). Such issues will be
resolved only through further exploration and testing with
predictive challenges for diverse disease systems.

Finally, because disease transmission systems often
represent complex interactions among multiple species
(e.g., vectors, hosts, pathogens), options exist for how they
should be analyzed and modeled. Simple focus on disease
occurrences, such as human cases, treats the entire trans-
mission system as a black box and as such gives an over-
all picture of the ecology of the transmission chain of that
disease (12). An alternative, however, is modeling each
component species in the transmission system and then
assembling the component ENMs into a geographic
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picture of the transmission system (22). Each of these
approaches has its relative advantages and disadvantages,
but a best-practices method has yet to be established, pend-
ing further testing and exploration.

Conclusions
The emerging field of ENM applied to questions of

ecologic and geographic characteristics of disease systems
has considerable potential. In particular, it can solve sever-
al problems of spatial resolution of summaries of geo-
graphic risk for disease. In sharp contrast to surface-fitting
approaches to the same questions, ENM does not lose res-
olution to generalize and produce a result. Rather, ENM
can achieve fine-scale resolution of distributions limited
only by the spatial precision of the input occurrence data
and the input environmental datasets. This characteristic
makes possible a clear improvement in the spatial resolu-
tion that is possible in representing spatial patterns in dis-
ease risk.

ENM is in the early stages of being explored for its
potential for illuminating unknown phenomena in the
world of disease transmission. The extensive explorations
of ENM in the biodiversity field, however, serve as a
benchmark of quality and acceptance for the technique. It
can, once tested and prototyped extensively in the disease
realm, offer a much-improved representation of spatial
patterns in distributions of species or other phenomena.

Acknowledgments
I send many thanks for years of collaboration and education

in the world of diseases and their geography to Ben Beard, Janine
Ramsey, Jim Mills, Darin Carroll, Karl Johnson, Mark Benedict,
Bex Levine, Ken Gage, Rusty Enscore, Erin Staples, Jeffrey
Shaw, and Roger Nasci, as well as numerous other colleagues
whose omission here is not reflective of my appreciation.

Dr Peterson is professor of ecology and evolutionary biology
at the Biodiversity Institute of the University of Kansas. His
research interests include many aspects of geographic distribu-
tions of species, including the geography and ecology of filovirus-
es and other disease systems.

References

1. Waller LA, Carlin BP, Xia H, Gelfand AE. Hierarchical spatio-tem-
poral mapping of disease rates. J Am Stat Assoc. 1997;92:607–17.

2. Kleinschmidt I, Bagayoko M, Clarke GPY, Craig M, Le Sueur D. A
spatial statistical approach to malaria mapping. Int J Epidemiol.
2000;29:355–61.

3. MacNab YC, Dean CB. Autoregressive spatial smoothing and tempo-
ral spline smoothing for mapping rates. Biometrics. 2001;57:949–56.

4. Grinnell J. Field tests of theories concerning distributional control.
Am Nat. 1917;51:115–28.

5. Soberón J, Peterson AT. Interpretation of models of fundamental eco-
logical niches and species’ distributional areas. Biodiversity
Informatics. 2005;2:1–10.

6. Austin MP, Nicholls AO, Margules CR. Measurement of the realized
qualitative niche: environmental niches of five Eucalyptus species.
Ecol Monogr. 1990;60:161–77.

7. Guisan A, Zimmermann NE. Predictive habitat distribution models in
ecology. Ecological Modelling. 2000;135:147–86.

8. Peterson AT. Predicting the geography of species’ invasions via eco-
logical niche modeling. Q Rev Biol. 2003;78:419–33.

9. Wiley EO, McNyset KM, Peterson AT, Robins CR, Stewart AM.
Niche modeling and geographic range predictions in the marine envi-
ronment using a machine-learning algorithm. Oceanography.
2003;16:120–7.

10. Soberón J, Peterson AT. Biodiversity informatics: managing and
applying primary biodiversity data. Philos Trans R Soc Lond B Biol
Sci. 2004;359:689–98.

11. Costa J, Peterson AT, Beard CB. Ecological niche modeling and dif-
ferentiation of populations of Triatoma brasiliensis Neiva, 1911, the
most important Chagas disease vector in northeastern Brazil
(Hemiptera, Reduviidae, Triatominae). Am J Trop Med Hyg.
2002;67:516–20.

12. Peterson AT, Bauer JT, Mills JN. Ecologic and geographic distribu-
tion of filovirus disease. Emerg Infect Dis. 2004;10:40–7.

13. Peterson AT, Lash RR, Carroll DS, Johnson KM. Geographic poten-
tial for outbreaks of Marburg hemorrhagic fever. Am J Trop Med
Hyg. 2006;75:9–15.

14. Rogers DJ, Randolph SE, Snow RW, Hay SI. Satellite imagery in the
study and forecast of malaria. Nature. 2002;415:710–5.

15. Thomson MC, Elnaiem DA, Ashford RW, Connor SJ. Towards a kala
azar risk map for Sudan: mapping the potential distribution of
Phlebotomus orientalis using digital data of environmental variables.
Trop Med Int Health. 1999;4:105–13.

16. Sánchez-Cordero V, Peterson AT, Martínez-Meyer E, Flores R.
Distribución de roedores reservorios del virus causante del sindrome
pulmonar por hantavirus y regiones de posible riesgo en México.
Acta Zoologica Mexicana. 2005;21:79–91.

17. Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E.
Time-specific ecological niche modeling predicts spatial dynamics of
vector insects and human dengue cases. Trans R Soc Trop Med Hyg.
2005;99:647–55.

18. Lopez-Cardenas J, González-Bravo FE, Salazar-Schettino PM,
Gallaga-Solorzano JC, Ramírez-Barba E, Martínez-Mendez J, et al.
Fine-scale predictions of distributions of Chagas disease vectors in
the state of Guanajuato, Mexico. J Med Entomol. 2005;42:1068–81.

19. Levine RS, Peterson AT, Benedict MQ. Geographic and ecologic dis-
tributions of the Anopheles gambiae complex predicted using a
genetic algorithm. Am J Trop Med Hyg. 2004;70:105–9.

20. Levine RS, Benedict MQ, Peterson AT. Distribution of Anopheles
quadrimaculatus Say s.l. and implications for its role in malaria trans-
mission in the US. J Med Entomol. 2004;41:607–13.

21. Peterson AT, Shaw JJ. Lutzomyia vectors for cutaneous leishmaniasis
in southern Brazil: ecological niche models, predicted geographic
distributions, and climate change effects. Int J Parasitol.
2003;33:919–31.

22. Peterson AT, Sánchez-Cordero V, Beard CB, Ramsey JM. Ecologic
niche modeling and potential reservoirs for Chagas disease, Mexico.
Emerg Infect Dis. 2002;8:662–7.

23. Skov F. Potential plant distribution mapping based on climatic simi-
larity. Taxon. 2000;49:503–15.

24. Peterson AT, Papes M, Reynolds MG, Perry ND, Hanson B, Regnery
R. Native-range ecology and invasive potential of Cricetomys in
North America. Journal of Mammalogy. 2006;87:427–32. 

25. Peterson AT, Tian H, Martínez-Meyer E, Soberón J, Sánchez-Cordero
V, Huntley B. Modeling distributional shifts of individual species and
biomes. In: Lovejoy TE, Hannah L, editors. Climate change and bio-
diversity. New Haven (CT): Yale University Press; 2005. p. 211–28.

Ecologic Niche Modeling

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 12, December 2006 1825



26. Martínez-Meyer E, Peterson AT. Conservatism of ecological niche
characteristics in North American plant species over the Pleistocene-
to-recent transition. Journal of Biogeography. 2006;33:1779–89.

27. Martínez-Meyer E, Peterson AT, Hargrove WW. Ecological niches as
stable distributional constraints on mammal species, with implica-
tions for Pleistocene extinctions and climate change projections for
biodiversity. Global Ecology and Biogeography. 2004;13:305–14.

28. Araujo MB, Pearson RG, Thuiller W, Erhard M. Validation of species-
climate impact models under climate change. Global Change
Biology. 2005;11:1504–13.

29. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC. Climate
change threats to plant diversity in Europe. Proc Natl Acad Sci U S
A. 2005;102:8245–50.

30. Bakkenes M, Alkemade JR, Ihle F, Leemansand R, Latour JB.
Assessing effects of forecasted climate change on the diversity and
distribution of European higher plants for 2050. Global Change
Biology. 2002;8:390–407.

31. Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels
KJ. Vulnerability of South African animal taxa to climate change.
Global Change Biology. 2002;8:679–93.

32. Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V,
Soberón J, Buddemeier RH, et al. Future projections for Mexican fau-
nas under global climate change scenarios. Nature. 2002;416:626–9.

33. Peterson AT, Carroll D, Mills JN. Potential mammalian filovirus
reservoirs. Emerg Infect Dis. 2004;10:2073–81.

34. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et
al. Novel methods improve prediction of species’ distributions from
occurrence data. Ecography. 2006;29:129–51.

35. Manel S, Dias JM, Ormerod SJ. Comparing discriminant analysis,
neural networks, and logistic regression for predicting species distri-
butions: a case study with a Himalayan river bird. Ecological
Modelling. 1999;120:337–47.

36. Stockwell DR, Peterson AT. Effects of sample size on accuracy of
species distribution models. Ecological Modelling. 2002;148:1–13.

37. Stockwell DR, Peterson AT. Comparison of resolution of methods
used in mapping biodiversity patterns from point occurrence data.
Ecological Indicators. 2003;3:213–21.

38. Fielding AH, Bell JF. A review of methods for the assessment of pre-
diction errors in conservation presence/absence models.
Environmental Conservation. 1997;24:38–49.

39. Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E.
Time-specific ecological niche modeling predicts spatial dynamics of
vector insects and human dengue cases. Trans R Soc Trop Med Hyg.
2005;99:647–55.

40. Roura-Pascual N, Suarez AV, McNyset K, Gómez C, Pons P, Wild
TO, et al. Potential geographic distribution, ecological niche differen-
tiation, and fine-scale regional projections for Argentine ants based
on remotely-sensed data. Ecological Applications. 2006;16 (in press). 

Address for correspondence: A. Townsend Peterson, Natural History
Museum and Biodiversity Research Center, University of Kansas,
Lawrence, KS 66045, USA; email: town@ku.edu

PERSPECTIVE

1826 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 12, December 2006

Search
past issues




